- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.12 trang 76 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Người ta muốn làm một khung gỗ tam giác đều để đặt vừa khít một chiếc đồng hồ hình tròn có đường kính 30cm (H.9.23). Hỏi độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Gọi khung gỗ hình tam giác đều là tam giác ABC. Đồng hồ là đường tròn tâm I, có đường kính 30cm
+ Gọi H là giao điểm của AI và BC nên IH là bán kính đường tròn nội tiếp tam giác ABC.
+ Ta có: \(IH = \frac{{\sqrt 3 }}{6}BC\), từ đó tính được BC.
Lời giải chi tiết
Gọi khung gỗ hình tam giác đều là tam giác ABC.
Đồng hồ là đường tròn tâm I, bán kính \(IH = \frac{{30}}{2} = 15cm\)
Vì (I; IH) nội tiếp tam giác đều ABC nên \(IH = \frac{{\sqrt 3 }}{6}BC\), \(15 = \frac{{\sqrt 3 }}{6}BC\) nên \(BC = 30\sqrt 3 \left( {cm} \right)\)
Vậy độ dài cạnh khung gỗ phía bên trong bằng \(30\sqrt 3 cm\).