- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.13 trang 79 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Cho tam giác ABC nội tiếp đường tròn (O). Biết rằng \(\widehat {BOC} = {120^o}\) và \(\widehat {OCA} = {20^o}\). Tính số đo các góc của tam giác ABC.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Tính được \(\widehat {BAC} = \frac{1}{2}\widehat {BOC} = \frac{1}{2}{.120^o} = {60^o}\).
+ Chứng minh tam giác AOC cân tại O, tính được: \(\widehat {ACO} = \widehat {OAC}\)
+ Tính được \(\widehat {AOC} = {180^o} - \widehat {CAO} - \widehat {ACO}\)
+ Tính được \(\widehat {ABC} = \frac{1}{2}\widehat {AOC} = \frac{1}{2}{.140^o} = {70^o}\)
+ Tam giác ABC có: \(\widehat {ACB} = {180^o} - \widehat {BAC} - \widehat {ABC}\)
Lời giải chi tiết
Tam giác ACO có: \(OA = OC\) (bán kính (O)) nên tam giác AOC cân tại O. Do đó, \(\widehat {ACO} = \widehat {OAC} = {20^o}\)
Suy ra:
\(\widehat {AOC} = {180^o} - \widehat {CAO} - \widehat {ACO} = {180^o} - {20^o} - {20^o} = {140^o}\)
Xét đường tròn (O):
Vì góc nội tiếp BAC và góc ở tâm BOC cùng chắn cung nhỏ BC nên \(\widehat {BAC} = \frac{1}{2}\widehat {BOC} = \frac{1}{2}{.120^o} = {60^o}\)
Vì góc nội tiếp ABC và góc ở tâm AOC cùng chắn cung nhỏ AC nên \(\widehat {ABC} = \frac{1}{2}\widehat {AOC} = \frac{1}{2}{.140^o} = {70^o}\)
Tam giác ABC có:
\(\widehat {ACB} = {180^o} - \widehat {BAC} - \widehat {ABC} = {180^o} - {60^o} - {70^o} = {50^o}\)