- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.23 trang 83 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Người ta muốn dựng một khung cổng hình chữ nhật rộng 4m và cao 3m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa đường tròn như Hình 9.37. Tính chiều dài của đoạn thép làm khung nửa đường tròn đó.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Gọi khung cổng hình chữ nhật là ABHG với \(AB = GH = 4m,AG = BH = 3m\). EF là đường kính của nửa đường tròn bao bởi khung cổng.
+ Gọi C là điểm đối xứng với B qua H, D là điểm đối xứng với A qua G.
+ Khi đó, ABCD là hình chữ nhật với \(AB = CD = 4m,AD = BC = 6m\).
+ Hình chữ nhật ABCD nội tiếp đường tròn đường kính AC bằng \(2\sqrt {13} m\), từ đó tính được chiều dài của đoạn thép làm nửa đường tròn là nửa chu vi của hình tròn đường kính AC.
Lời giải chi tiết
Gọi khung cổng hình chữ nhật là ABHG với \(AB = GH = 4m,AG = BH = 3m\). EF là đường kính của nửa đường tròn bao bởi khung cổng.
Gọi C là điểm đối xứng với B qua H, D là điểm đối xứng với A qua G.
Khi đó, ABCD là hình chữ nhật với \(AB = CD = 4m,AD = BC = 6m\).
Suy ra, hình chữ nhật ABCD nội tiếp đường tròn tâm O, đường kính AC.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{4^2} + {6^2}} = 2\sqrt {13} \left( m \right)\)
Do đó, chu vi đường tròn đường kính AC là:
\(P = AC.\pi = 2\sqrt {13} \pi \left( {m} \right)\)
Vậy chiều dài của đoạn khung thép làm nửa đường tròn đó là \(\frac{2\sqrt {13} \pi}{2} = \sqrt {13} \pi m\).