- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.30 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Cho vòng quay mặt trời gồm tám cabin như Hình 9.55. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Gọi tám cabin tạo thành một bát giác đều BACDEFGH nội tiếp đường tròn (O).
+ Chứng minh \(\Delta HOB = \Delta HOG = \Delta FOG = \Delta FOE = \Delta DOE = \Delta DOC = \Delta AOC = \Delta AOB\left( {c.c.c} \right)\), suy ra: \(\widehat {HOB} = \widehat {HOG} = \widehat {GOF} = \widehat {EOF} = \widehat {DOE} = \widehat {COD} = \widehat {AOC} = \widehat {AOB} = \frac{{{{360}^o}}}{8} = {45^o}\)
+ Tính góc AOG
+ Để cabin A di chuyển đến vị trí cao nhất (vị trí cabin G) thì vòng quay phải quay theo chiều thuận kim đồng hồ quanh tâm góc \({135^o}\).
Lời giải chi tiết
Gọi tám cabin tạo thành một bát giác đều BACDEFGH nội tiếp đường tròn (O).
Vì BACDEFGH là bát giác đều nên
\(AB = AC = CD = DE = EF = FG = GH = HB\)
Vì BACDEFGH là bát giác nội tiếp đường tròn (O) nên
\(OA = OB = OC = OD = OE = OF = OH = OG\)
Do đó
\(\Delta HOB = \Delta HOG = \Delta FOG = \Delta FOE = \Delta DOE = \Delta DOC = \Delta AOC = \Delta AOB\left( {c.c.c} \right)\)
Suy ra
\(\widehat {HOB} = \widehat {HOG} = \widehat {GOF} = \widehat {EOF} = \widehat {DOE} = \widehat {COD} = \widehat {AOC} = \widehat {AOB} = \frac{{{{360}^o}}}{8} = {45^o}\)
Ta có:
\(\widehat {AOG} = \widehat {AOB} + \widehat {BOH} + \widehat {HOG} = {45^o} + {45^o} + {45^o} = {135^o}\)
Để cabin A di chuyển đến vị trí cao nhất (vị trí cabin G) thì vòng quay phải quay theo chiều thuận kim đồng hồ quanh tâm góc \({135^o}\).