- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.31 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Chứng minh bốn điểm B, F, E, C thuộc đường tròn đường kính BC nên tứ giác BCEF là tứ giác nội tiếp.
+ Chứng minh bốn điểm C, A, F, D thuộc đường tròn đường kính AC nên tứ giác CAFD là tứ giác nội tiếp.
+ Chứng minh bốn điểm B, A, E, D thuộc đường tròn đường kính BA nên tứ giác ABDE là tứ giác nội tiếp.
Lời giải chi tiết
Vì AD, BE, CF là các đường cao của tam giác ABC nên \(AD \bot BC,BE \bot AC,CF \bot AB\).
Do đó, \(\widehat {ADB} = \widehat {ADC} = \widehat {BEC} = \widehat {BEA} = \widehat {AFC} = \widehat {CFB} = {90^o}\).
Vì \(\widehat {BFC} = \widehat {BEC} = {90^o}\) nên tam giác BFC vuông tại F và tam giác BEC vuông tại E. Do đó, hai điểm E, F thuộc đường tròn đường kính BC. Do đó, tứ giác BCEF là tứ giác nội tiếp.
Vì \(\widehat {AFC} = \widehat {ADC} = {90^o}\) nên tam giác AFC vuông tại F và tam giác ADC vuông tại D. Do đó, hai điểm D, F thuộc đường tròn đường kính AC. Do đó, tứ giác CAFD là tứ giác nội tiếp.
Vì \(\widehat {ADB} = \widehat {AEB} = {90^o}\) nên tam giác ADB vuông tại D và tam giác AEB vuông tại E. Do đó, hai điểm E, D thuộc đường tròn đường kính BA. Do đó, tứ giác ABDE là tứ giác nội tiếp.
- Giải bài tập 9.32 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.33 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.34 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.35 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.36 trang 91 SGK Toán 9 tập 2 - Kết nối tri thức