- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Vở thực hành Lớp 7
- Vở thực hành Toán 7 - Tập 2
- Chương IX. Quan hệ giữa các yếu tố trong tam giác
-
Vở thực hành Toán 7 - Tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 60, 61, 62
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 66, 67, 68
- Bài 15. Các trường hợp bằng nhau của tam giác vuôn
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 76
- Bài tập cuối chương 4
-
Chương V. Thu thập và biểu diễn dữ liệu
-
-
Vở thực hành Toán 7 - Tập 2
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác trang 66, 67, 68
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên trang 69, 70, 71
- Bài 33. Quan hệ giữa ba cạnh của một tam giác trang 71, 72, 73, 74
- Luyện tập chung trang 74, 75
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác trang 76, 77, 78, 79
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trang 81, 82, 83
- Luyện tập chung trang 84, 85
- Bài tập cuối chương 9 trang 86, 87, 88, 89
-
Chương X. Một số hình khối trong thực tiễn
-
Bài tập ôn tập cuối năm
-
Giải bài 3 (9.38) trang 87 vở thực hành Toán 7 tập 2
Đề bài
Gọi AI và AM lần lượt là đường cao và đường trung tuyến xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng:
a) \(AI < \frac{1}{2}\left( {AB + AC} \right)\);
b) \(AM < \frac{1}{2}\left( {AB + AC} \right)\).
Phương pháp giải - Xem chi tiết
a) Chứng minh \(AI < AB\), \(AI < AC\) nên \(2AI < AB + AC\) hay \(AI < \frac{1}{2}\left( {AB + AC} \right)\).
b) + Lấy điểm D sao cho M là trung điểm của AD.
+ Chứng minh \(\Delta ABM = \Delta DCM\left( {c.g.c} \right)\), suy ra \(AB = CD\).
+ Chỉ ra \(AD < AC + DC\), suy ra \(2AM < AC + AB\), suy ra \(AM < \frac{1}{2}\left( {AB + AC} \right)\)
Lời giải chi tiết
a) Trong tam giác vuông AIB có AB là cạnh huyền nên \(AI < AB\).
Trong tam giác vuông AIC có AC là cạnh huyền nên \(AI < AC\).
Suy ra \(2AI < AB + AC\) hay \(AI < \frac{1}{2}\left( {AB + AC} \right)\).
b) Lấy điểm D sao cho M là trung điểm của AD.
Xét \(\Delta ABM\) và \(\Delta DCM\) có: \(AM = MD,\widehat {AMB} = \widehat {DMC},MB = MC\), do đó, \(\Delta ABM = \Delta DCM\left( {c.g.c} \right)\).
Trong tam giác ACD, ta có \(AD < AC + DC\), suy ra \(2AM < AC + AB\), suy ra \(AM < \frac{1}{2}\left( {AB + AC} \right)\).