- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Vở thực hành Lớp 7
- Vở thực hành Toán 7 - Tập 1
- Chương IV. Tam giác bằng nhau
-
Vở thực hành Toán 7 - Tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 60, 61, 62
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 66, 67, 68
- Bài 15. Các trường hợp bằng nhau của tam giác vuôn
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 76
- Bài tập cuối chương 4
-
Chương V. Thu thập và biểu diễn dữ liệu
-
-
Vở thực hành Toán 7 - Tập 2
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác trang 66, 67, 68
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên trang 69, 70, 71
- Bài 33. Quan hệ giữa ba cạnh của một tam giác trang 71, 72, 73, 74
- Luyện tập chung trang 74, 75
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác trang 76, 77, 78, 79
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trang 81, 82, 83
- Luyện tập chung trang 84, 85
- Bài tập cuối chương 9 trang 86, 87, 88, 89
-
Chương X. Một số hình khối trong thực tiễn
-
Bài tập ôn tập cuối năm
-
Giải bài 4 (4.10) trang 61 vở thực hành Toán 7
Đề bài
Bài 4 (4.10). Cho tam giác ABC có \(\widehat {BCA} = {60^o}\)và điểm M nằm trên cạnh BC sao cho \(\widehat {BAM} = {20^o},\widehat {AMC} = {80^o}\) . Tính số đo \(\widehat {AMB},\widehat {ABC},\widehat {BAC}\).
Phương pháp giải - Xem chi tiết
Tổng ba góc trong một tam giác bằng \({180^o}\).
Lời giải chi tiết
GT | \(\Delta ABC,\widehat {BCA} = {60^o}\),\(\widehat {BAM} = {20^o},\widehat {AMC} = {80^o}\) |
KL | Tính \(\widehat {AMB},\widehat {ABC},\widehat {BAC}\) |
Vì AMB và AMC là hai góc kề bù nên ta có
\(\widehat {AMB} + \widehat {AMC} = {180^o} \Rightarrow \widehat {AMB} = {180^o} - \widehat {AMC} = {100^o}\)
Tổng ba góc trong tam giác ABM bằng \({180^o}\)nên ta có
\(\widehat {ABM} + \widehat {AMB} + \widehat {BAM} = {180^o} \Rightarrow \widehat {ABM} = {180^o} - \widehat {AMB} - \widehat {BAM} = {180^o} - {100^o} - {20^o} = {60^o}\)
Vì M nằm trên cạnh BC nên \(\widehat {ABC} = \widehat {ABM} = {60^o}\)
Tổng ba góc trong tam giác ABC bằng \({180^o}\)nên ta có
\(\widehat {ABC} + \widehat {BCA} + \widehat {BAC} = {180^o} \Rightarrow \widehat {BAC} = {180^o} - \widehat {BCA} - \widehat {ABC} = {60^o}\)
Kết luận \(\widehat {AMB} = {100^o},\widehat {ABC} = {60^o},\widehat {BAC} = {60^o}\)