- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Vở thực hành Lớp 7
- Vở thực hành Toán 7 - Tập 2
- Chương IX. Quan hệ giữa các yếu tố trong tam giác
-
Vở thực hành Toán 7 - Tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 60, 61, 62
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 66, 67, 68
- Bài 15. Các trường hợp bằng nhau của tam giác vuôn
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 76
- Bài tập cuối chương 4
-
Chương V. Thu thập và biểu diễn dữ liệu
-
-
Vở thực hành Toán 7 - Tập 2
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác trang 66, 67, 68
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên trang 69, 70, 71
- Bài 33. Quan hệ giữa ba cạnh của một tam giác trang 71, 72, 73, 74
- Luyện tập chung trang 74, 75
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác trang 76, 77, 78, 79
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trang 81, 82, 83
- Luyện tập chung trang 84, 85
- Bài tập cuối chương 9 trang 86, 87, 88, 89
-
Chương X. Một số hình khối trong thực tiễn
-
Bài tập ôn tập cuối năm
-
Giải bài 4 (9.23) trang 78 vở thực hành Toán 7 tập 2
Đề bài
Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC khi biết góc BAC bằng 120o.
Phương pháp giải - Xem chi tiết
+ Chỉ ra \(\widehat {IBC} = \frac{{\widehat B}}{2},\widehat {ICB} = \frac{{\widehat {ACB}}}{2},\widehat {BIC} = {180^o} - \left( {\frac{{\widehat B}}{2} + \frac{{\widehat {ACB}}}{2}} \right)\), \(\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2} = \frac{{\widehat B + \widehat C}}{2} = {30^o}\), nên tính được góc BIC.
Lời giải chi tiết
Ta có: \(\widehat {IBC} = \frac{{\widehat B}}{2},\widehat {ICB} = \frac{{\widehat {ACB}}}{2},\widehat {BIC} = {180^o} - \left( {\frac{{\widehat B}}{2} + \frac{{\widehat {ACB}}}{2}} \right)\)
mà \(\frac{{\widehat B}}{2} + \frac{{\widehat C}}{2} = \frac{{\widehat B + \widehat C}}{2} = \frac{{{{180}^o} - \widehat {BAC}}}{2} = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\)
Do đó, \(\widehat {BIC} = {180^o} - {30^o} = {150^o}\).