- Trang chủ
- Lớp 7
- Toán học Lớp 7
- Vở thực hành Lớp 7
- Vở thực hành Toán 7 - Tập 2
- Chương IX. Quan hệ giữa các yếu tố trong tam giác
-
Vở thực hành Toán 7 - Tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 60, 61, 62
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 66, 67, 68
- Bài 15. Các trường hợp bằng nhau của tam giác vuôn
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 76
- Bài tập cuối chương 4
-
Chương V. Thu thập và biểu diễn dữ liệu
-
-
Vở thực hành Toán 7 - Tập 2
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác trang 66, 67, 68
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên trang 69, 70, 71
- Bài 33. Quan hệ giữa ba cạnh của một tam giác trang 71, 72, 73, 74
- Luyện tập chung trang 74, 75
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác trang 76, 77, 78, 79
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trang 81, 82, 83
- Luyện tập chung trang 84, 85
- Bài tập cuối chương 9 trang 86, 87, 88, 89
-
Chương X. Một số hình khối trong thực tiễn
-
Bài tập ôn tập cuối năm
-
Giải bài 4 trang 70, 71 vở thực hành Toán 7 tập 2
Đề bài
Cho tam giác ABC. D là một điểm bất kì trên đoạn BC. Từ B, C kẻ các đường vuông góc BK, CN đến đường thẳng AD.
a) So sánh BK, BD.
b) So sánh \(BK + CN\) với BC.
c) Chứng minh \(BK + CN < \frac{1}{2}\left( {AB + BC + CA} \right)\).
Phương pháp giải - Xem chi tiết
a) Tam giác vuông BKD có BD là cạnh huyền nên \(BK < BD\).
b) + Từ a) suy ra \(BK + CN < BD + CN\).
+ Chứng minh tương tự: \(BD + CN < BD + CD\). Do đó, \(BK + CN < BD + CN < BD + CD = BC\).
c) + Chứng minh \(BK < AB\), \(CN < AC\).
+ Mà \(BK + CN < BC\) nên \(\left( {BK + CN} \right) + BK + CN < BC + AB + AC\), nên \(BK + CN < \frac{1}{2}\left( {AB + BC + CA} \right)\)
Lời giải chi tiết
a) Trong tam giác vuông BKD có BD là cạnh huyền nên \(BK < BD\) (1)
b) Từ (1) suy ra \(BK + CN < BD + CN\) (2)
Trong tam giác vuông CND có DC là cạnh huyền nên \(NC < CD\), suy ra: \(BD + CN < BD + CD\). (3)
Từ (2) và (3) suy ra \(BK + CN < BD + CN < BD + CD = BC\).
Do đó, \(BK + CN < BC\). (4)
c) Trong tam giác vuông ABK có AB là cạnh huyền nên \(BK < AB\). (5)
Trong tam giác vuông CAN có AC là cạnh huyền nên \(CN < AC\). (6)
Từ (4), (5) và (6) suy ra \(\left( {BK + CN} \right) + BK + CN < BC + AB + AC\), hay \(2\left( {BK + CN} \right) < AB + BC + CA\), do đó \(BK + CN < \frac{1}{2}\left( {AB + BC + CA} \right)\).