-
Vở thực hành Toán 7 - Tập 1
-
Chương I. Số hữu tỉ
-
Chương II. Số thực
-
Chương III. Góc và đường thẳng song song
-
Chương IV. Tam giác bằng nhau
- Bài 12. Tổng các góc trong một tam giác
- Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
- Luyện tập chung trang 60, 61, 62
- Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
- Luyện tập chung trang 66, 67, 68
- Bài 15. Các trường hợp bằng nhau của tam giác vuôn
- Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
- Luyện tập chung trang 76
- Bài tập cuối chương 4
-
Chương V. Thu thập và biểu diễn dữ liệu
-
-
Vở thực hành Toán 7 - Tập 2
-
Chương VI. Tỉ lệ thức và đại lượng tỉ lệ
-
Chương VII. Biểu thức đại số và đa thức một biến
-
Chương VIII. Làm quen với biến cố và xác suất của biến cố
-
Chương IX. Quan hệ giữa các yếu tố trong tam giác
- Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác trang 66, 67, 68
- Bài 32. Quan hệ giữa đường vuông góc và đường xiên trang 69, 70, 71
- Bài 33. Quan hệ giữa ba cạnh của một tam giác trang 71, 72, 73, 74
- Luyện tập chung trang 74, 75
- Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác trang 76, 77, 78, 79
- Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trang 81, 82, 83
- Luyện tập chung trang 84, 85
- Bài tập cuối chương 9 trang 86, 87, 88, 89
-
Chương X. Một số hình khối trong thực tiễn
-
Bài tập ôn tập cuối năm
-
Giải bài 9 trang 16 vở thực hành Toán 7
Đề bài
Tính \(A = \left( {{{\left( {\frac{1}{{125}}} \right)}^3} + {{\left( {\frac{1}{5}} \right)}^5}} \right):\left( {{{\left( {\frac{1}{5}} \right)}^5} + \frac{1}{5}} \right).\)
Phương pháp giải - Xem chi tiết
-Ta biến đổi trong từng ngoặc đưa các số về lũy thừa số cùng cơ số.
-Sử dụng tính chất kết hợp để giải trong ngoặc.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}{\left( {\frac{1}{{125}}} \right)^3} + {\left( {\frac{1}{5}} \right)^5} = {\left[ {{{\left( {\frac{1}{5}} \right)}^3}} \right]^3} + {\left( {\frac{1}{5}} \right)^5}\\ = {\left( {\frac{1}{5}} \right)^9} + {\left( {\frac{1}{5}} \right)^5} = {\left( {\frac{1}{5}} \right)^5}\left[ {{{\left( {\frac{1}{5}} \right)}^4} + 1} \right]\end{array}\)
\({\left( {\frac{1}{5}} \right)^5} + \frac{1}{5} = \frac{1}{5}.\left[ {{{\left( {\frac{1}{5}} \right)}^4} + 1} \right]\)
Vậy
\(\begin{array}{l}A = {\left( {\frac{1}{5}} \right)^5}\left[ {{{\left( {\frac{1}{5}} \right)}^4} + 1} \right]:\left\{ {\left( {\frac{1}{5}} \right).\left[ {{{\left( {\frac{1}{5}} \right)}^4} + 1} \right]} \right\}\\ = {\left( {\frac{1}{5}} \right)^5}:\left( {\frac{1}{5}} \right) = {\left( {\frac{1}{5}} \right)^4}.\end{array}\)