- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 1.11 trang 20 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Giải các hệ phương trình sau bằng phương pháp thế:
a) \(\left\{ \begin{array}{l}2x - y = 1\\x - 2y = - 1;\end{array} \right.\)
b) \(\left\{ \begin{array}{l}0,5x - 0,5y = 0,5\\1,2x - 1,2y = 1,2;\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x + 3y = - 2\\5x - 4y = 28.\end{array} \right.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Giải hệ phương trình bằng phương pháp thế:
Từ một phương trình của hệ, biểu diễn x theo y (hoặc y theo x) rồi thế vào phương trình còn lại để được phương trình một ẩn. Giải phương trình vừa nhận được ta được nghiệm của hệ phương trình.
Lời giải chi tiết
a) \(\left\{ \begin{array}{l}2x - y = 1\\x - 2y = - 1;\end{array} \right.\)
Từ phương trình đầu ta có \(y = 2x - 1\) thay vào phương trình thứ hai ta được \(x - 2\left( {2x - 1} \right) = - 1\) suy ra \( - 3x + 2 = - 1\) nên \(x = 1.\) Với \(x = 1\) ta có \(y = 2.1 - 1 = 1.\)
Vậy nghiệm của hệ phương trình là \(\left( {1;1} \right).\)
b) \(\left\{ \begin{array}{l}0,5x - 0,5y = 0,5\\1,2x - 1,2y = 1,2;\end{array} \right.\)
Từ phương trình đầu ta có \(0,5x = 0,5 + 0,5y\) suy ra \(x = 1 + y\) thay vào phương trình thứ hai ta được \(1,2\left( {1 + y} \right) - 1,2y = 1,2\) suy ra \(1,2 + 0y = 1,2\) nên \(0y = 0\) (luôn đúng) với \(y \in \mathbb{R}\) tùy ý.
Vậy hệ phương trình có nghiệm là \(\left( {1 + y;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.
c) \(\left\{ \begin{array}{l}x + 3y = - 2\\5x - 4y = 28.\end{array} \right.\)
Từ phương trình đầu ta có \(x = - 2 - 3y\) thay vào phương trình thứ hai ta được \(5\left( { - 2 - 3y} \right) - 4y = 28\) suy ra \( - 10 - 19y = 28\) nên \(y = - 2.\)
Với \(y = - 2\) ta có \(x = - 2 - 3.\left( { - 2} \right) = 4.\)
Vậy nghiệm của hệ phương trình là \(\left( {4;-2} \right).\)