- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 4. Hệ thức lượng trong tam giác vuông
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 4.15 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết \(HB = 3cm,HC = 6cm,\widehat {HAC} = {60^0}.\) Hãy tính độ dài các cạnh (làm tròn đến cm) , số đo các góc của tam giác ABC (làm tròn đến độ) .
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Ta cần tính các cạnh AB, BC, CA
\(BC = BH + HC\); AC tính dựa vào tỉ số lượng giác của \(\widehat {HAC}\) (\(\sin \widehat {HAC}\) )
Cạnh AB tính thông qua định lý Pythagore trong tam giác vuông ABH, tuy nhiên ta cần tính được cạnh AH, tính cạnh AH thông qua tỉ số lượng giác của \(\widehat {HAC}\left( {\tan \widehat {HAC}} \right)\)
Lời giải chi tiết
Cạnh \(BC = BH + HC = 3 + 6 = 9\) cm
Ta có:
\(\sin \widehat {HAC} = \frac{{HC}}{{AC}}\) hay \(\sin {60^0} = \frac{6}{{AC}}\) hay \(AC = \frac{6}{{\sin {{60}^0}}} = 4\sqrt 3 \approx 7\) cm
\(\tan \widehat {HAC} = \frac{{HC}}{{AH}}\) hay \(\tan {60^0} = \frac{6}{{AH}}\) nên \(AH = \frac{6}{{\tan {{60}^0}}} = 2\sqrt 3 \) cm
\(\widehat C = 90^\circ - 60^\circ = 30^\circ\)
Tam giác ABH vuông tại H nên ta có:
\(A{B^2} = A{H^2} + B{H^2} = {\left( {2\sqrt 3 } \right)^2} + {3^2} = 21\) hay \(AB = \sqrt {21} \approx 5\) cm (vì \(AB > 0\))
Ta có: \(tan B = \frac{AH}{BH} = \frac{2\sqrt 3}{3}\) suy ra \( \widehat B \approx 49^\circ\)
Áp dụng định lí tổng ba góc trong một tam giác, ta có:
\(\widehat {BAC} = 180^\circ - (\widehat B + \widehat C) = 180^\circ - (49^\circ + 30^\circ) = 101^\circ\)
- Giải bài tập 4.16 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.17 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.18 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.19 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.20 trang 80 SGK Toán 9 tập 1 - Kết nối tri thức