- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 2 Kết nối tri thức
- Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 9.20 trang 83 SGK Toán 9 tập 2 - Kết nối tri thức
Đề bài
Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng tính chất hai góc đối nhau của hình bình hành bằng nhau và tứ giác nội tiếp có tổng hai góc đối nhau bằng \(180^0\) để chứng minh hình bình hành có một góc vuông là hình chữ nhật.
Lời giải chi tiết
Vì ABCD là hình bình hành nên \(\widehat A = \widehat C\).
Mà hình bình hành ABCD nội tiếp đường tròn O nên \(\widehat A + \widehat C = 180^\circ\).
Từ đó, ta có \(\widehat A = \widehat C = \frac{180^\circ}{2} = 90^\circ\).
Hình bình hành ABCD có một góc vuông nên là hình chữ nhật.