Giải bài 2 (10.21) trang 102 vở thực hành Toán 7 tập 2

Đề bài

Tính thể tích, diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật và hình lăng trụ trong Hình 10.21.

11.png

Phương pháp giải - Xem chi tiết

+ Thể tích hình hộp chữ nhật: \(V = a.b.c\) với a, b, c lần lượt là chiều dài, chiều rộng, chiều cao của hình hộp chữ nhật đó.

+ Thể tích của hình lăng trụ đứng tam giác: \(V = \) Sđáy.h, trong đó V là thể tích của hình lăng trụ đứng, Sđáy là diện tích một đáy của hình lăng trụ đứng, h là chiều cao của hình lăng trụ đứng.

+ Diện tích xung quanh của hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác: \({S_{xq}} = \) Cđáy.h, trong đó \({S_{xq}}\) là diện tích xung quanh của hình lăng trụ đứng, Cđáy là chu vi một đáy của hình lăng trụ đứng, h là chiều cao của hình lăng trụ đứng.

+ Diện tích xung quanh hình hộp chữ nhật: \({S_{xq}} = 2\left( {a + b} \right).c\) với a, b, c lần lượt là chiều dài, chiều rộng, chiều cao của hình hộp chữ nhật đó.

+ Diện tích toàn phần= diện tích xung quanh+ diện tích hai đáy.

Lời giải chi tiết

  • Thể tích của hình hộp chữ nhật là: \(V = 9.9.4 = 324\).

Diện tích xung quanh của hình hộp chữ nhật là: \({S_{xq}} = 2.\left( {9 + 4} \right).9 = 234\)

Diện tích toàn phần của hình hộp chữ nhật là: \({S_{tp}} = 234 + 2.9.4 = 306\)

  • Thể tích của hình lăng trụ đứng tam giác là: \(V = \left( {\frac{1}{2}.5.12} \right).20 = 600\)

Diện tích xung quanh của hình lăng trụ đứng tam giác là: \({S_{xq}} = \left( {5 + 12 + 13} \right).20 = 600\)

Diện tích toàn phần của hình lăng trụ đứng tam giác là: \({S_{tp}} = 600 + 2.\left( {\frac{1}{2}.5.12} \right) = 660\)