Giải bài 6 (7.9) trang 31 vở thực hành Toán 7 tập 2

Đề bài

Viết đa thức F(x) thỏa mãn đồng thời các điều kiện sau:

  • Bậc của F(x) bằng 3;
  • Hệ số của \({x^2}\) bằng hệ số của x và bằng 2;
  • Hệ số cao nhất của F(x) bằng -6 và hệ số tự do bằng 3.

Phương pháp giải - Xem chi tiết

Cho một đa thức. Khi đó:

+ Bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức.

+ Hệ số của hạng tử có bậc cao nhất gọi là hệ số cao nhất.

+ Hệ số của hạng tử bậc 0 (hạng tử không chứa biến) gọi là hệ số tự do.

Lời giải chi tiết

Vì bậc F(x) bằng 3 và hệ số cao nhất của F(x) bằng -6 nên ta có hạng tử \( - 6{x^3}\).

Vì hệ số của \({x^2}\) bằng hệ số của x và bằng 2 nên ta có hạng tử: \(2{x^2}\) và 2x.

Vì hệ số tự do bằng 3 nên ta có hạng tử 3.

Vậy đa thức cần tìm là \(F\left( x \right) =  - 6{x^3} + 2{x^2} + 2x + 3\).