- Trang chủ
- Lớp 9
- Toán học Lớp 9
- SGK Toán Lớp 9 Kết nối tri thức
- Toán 9 tập 1 Kết nối tri thức
- Chương 4. Hệ thức lượng trong tam giác vuông
-
Toán 9 tập 1
-
Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn
-
Chương 2. Phương trình và bất phương trình bậc nhất một ẩn
-
Chương 3. Căn bậc hai và căn bậc ba
-
Chương 4. Hệ thức lượng trong tam giác vuông
-
Chương 5. Đường tròn
- Bài 13. Mở đầu về đường tròn
- Bài 14. Cung và dây của một đường tròn
- Bài 15. Độ dài của cung tròn. Diện tích hình quạt tròn và hình vành khuyên
- Luyện tập chung trang 96
- Bài 16. Vị trí tương đối của đường thẳng và đường tròn
- Bài 17. Vị trí tương đối của hai đường tròn
- Luyện tập chung trang 108
- Bài tập cuối chương 5
-
Hoạt động thực hành trải nghiệm
-
-
Toán 9 tập 2
-
Chương 6. Hàm số y = ax² (a ≠ 0). Phương trình bậc hai một ẩn
-
Chương 7. Tần số và tần số tương đối
-
Chương 8. Xác suất của biến cố trong một số mô hình xác suất đơn giản
-
Chương 9. Đường tròn ngoại tiếp và đường tròn nội tiếp
-
Chương 10. Một số hình khối trong thực tiễn
-
Hoạt động thực hành trải nghiệm
-
Bài tập ôn tập cuối năm
-
Giải bài tập 4.1 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức
Đề bài
Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết:
a) AB = 8 cm, BC = 17 cm;
b) AC = 0,9 cm, AB = 1,2 cm.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các tỉ số lượng giác để giải.
Lời giải chi tiết
a)
Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)
Thay số ta có \({17^2} = {8^2} + A{C^2}\) hay \(A{C^2} = {17^2} - {8^2} = 225\) suy ra \(AC = 15\) cm (vì \(AC > 0\))
Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{15}}{{17}}\)
\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{8}{{17}}\)
\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{15}}{8}\)
\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{8}{{15}}\)
b)
Tam giác ABC vuông tại A nên ta có: \(B{C^2} = A{B^2} + A{C^2}\) (Định lý Pythagore)
Thay số ta có \(B{C^2} = 1,{2^2} + 0,{9^2} = 2,25\) hay \(CB = \sqrt {2,25} = 1,5\) cm (vì \(BC > 0\))
Ta có: \(\sin \widehat B = \cos \widehat C = \frac{{AC}}{{BC}} = \frac{{0,9}}{{1,5}} = \frac{3}{5}\)
\(\cos \widehat B = \sin \widehat C = \frac{{AB}}{{BC}} = \frac{{1,2}}{{1,5}} = \frac{4}{5}\)
\(\tan \widehat B = \cot \widehat C = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,2}} = \frac{3}{4}\)
\(\cot \widehat B = \tan \widehat C = \frac{{AB}}{{AC}} = \frac{{1,2}}{{0,9}} = \frac{4}{3}\)
- Giải bài tập 4.2 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.3 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.4 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.5 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức
- Giải bài tập 4.6 trang 73 SGK Toán 9 tập 1 - Kết nối tri thức