Đề bài
Câu 1
Chọn câu sai. Với điều kiện các phân thức có nghĩa thì:
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}}\)
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x - y - z}}{{a - b - c}}\)
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x - y + z}}{{a - b + c}}\)
\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y - z}}{{a - b + c}}\)
Câu 2
Tìm hai số \(x;y\) biết \(\dfrac{x}{3} = \dfrac{y}{5}\) và \(x + y = - 32\)
\(x = - 20;y = - 12\)
\(x = - 12;y = 20\)
\(x = - 12;y = - 20\)
\(x = 12;y = - 20\)
Câu 3
Cho \(7x = 4y\) và \(y - x = 24\). Tính \(x;y\).
\(y = 4;x = 7\)
\(x = 32;y = 56\)
\(x = 56;y = 32\)
\(x = 4;y = 7\)
Câu 4
Cho \(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5}\) và \(x + y + z = - 90\). Số lớn nhất trong ba số \(x;y;z\) là
-18
\( - 27\)
\( - 9\)
\( - 45\)
Câu 5
Cho \(\dfrac{x}{2} = \dfrac{y}{5}\) và \(xy = 10\). Tính \(x - y\) biết \(x > 0;y > 0.\)
\( - 3\)
\(3\)
\(8\)
\( - 8\)
Câu 6
Có bao nhiêu bộ số \(x;y\) thỏa mãn \(\dfrac{x}{5} = \dfrac{y}{4}\) và \({x^2} - {y^2} = 9\).
\(2\)
\(3\)
\(4\)
\(1\)
Câu 7
Ba lớp 7A1, 7A2, 7A3 có tất cả 180 học sinh. Số học sinh lớp 7A1 bằng \(\dfrac{9}{10}\) số học sinh lớp 7A2, số học sinh lớp 7A2 bằng \(\dfrac{{10}}{{11}}\) số học sinh lớp 7A3. Tính số học sinh của lớp 7A1.
\(48\) học sinh
\(54\) học sinh
\(60\) học sinh
\(66\) học sinh
Câu 8
Chọn câu đúng. Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\)thì:
\(\dfrac{{7a + 3b}}{{7a - 3b}} = \dfrac{{7c + 3d}}{{7c + 3d}}\)
\(\dfrac{{7a - 3b}}{{7a - 3b}} = \dfrac{{7c + 3d}}{{7c - 3d}}\)
\(\dfrac{{7a - 3b}}{{7a - 3b}} = \dfrac{{7c + 3d}}{{7c - 3d}}\)
\(\dfrac{{7a + 3b}}{{7a - 3b}} = \dfrac{{7c + 3d}}{{7c - 3d}}\)
Câu 9
Ba vòi nước cùng chảy vào một hồ có dung tích \(15,8{m^3}\) từ lúc hồ không có nước cho tới khi đầy hồ. Biết rằng thời gian để chảy được \(1{m^3}\) nước của vòi thứ nhất là \(3\) phút, vòi thứ hai là \(5\) phút và vòi thứ ba là \(8\) phút. Hỏi vòi chảy nhanh nhất chảy được bao nhiêu nước vào hồ?
4,8 m3
8 m3
9,6 m3
10,4 m3
Đáp án
Câu 1
Ta có \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y - z}}{{a + b - c}} \ne \dfrac{{x + y - z}}{{a - b + c}}\) nên D sai.
Đáp án đúng là d
Câu 2
Áp dụng dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3} = \dfrac{y}{5} = \dfrac{{x + y}}{{3 + 5}} = \dfrac{{ - 32}}{8} = - 4\)
Do đó \(\dfrac{x}{3} = - 4 \Rightarrow x = - 12\) và \(\dfrac{y}{5} = - 4 \Rightarrow y = - 20.\)
Vậy \(x = - 12;y = - 20.\)
Đáp án đúng là c
Câu 3
Ta có \(7x = 4y \) nên \( \dfrac{x}{4} = \dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{y}{7} = \dfrac{x}{4} = \dfrac{{y - x}}{{7 - 4}} = \dfrac{{24}}{3} = 8\)
Do đó \(x = 8.4 = 32\) và \(y = 8.7 = 56\)
Vậy \(x = 32;y = 56.\)
Đáp án đúng là b
Câu 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{5} = \dfrac{{x + y + z}}{{2 + 3 + 5}} = \dfrac{{ - 90}}{{10}} = - 9\)
Do đó \(\dfrac{x}{2} = - 9 \Rightarrow x = - 18\)
\(\dfrac{y}{3} = - 9 \Rightarrow y = - 27\)
\(\dfrac{z}{5} = - 9 \Rightarrow z = - 45\)
Vậy số lớn nhất trong ba số trên là x = -18
Đáp án đúng là a
Câu 5
Đặt \(\dfrac{x}{2} = \dfrac{y}{5} = k\)ta có \(x = 2k;\,y = 5k\)
Nên \(x.y = 2k.5k = 10{k^2} = 10 \Rightarrow {k^2} = 1\) \( \Rightarrow k = 1\) hoặc \(k = - 1\).
Với \(k = 1\) thì \(x = 2;y = 5\)
Với \(k = - 1\) thì \(x = - 2;y = - 5\)
Vì \(x > 0;y > 0\) nên \(x = 2;y = 5\) từ đó \(x - y = 2 - 5 = - 3.\)
Đáp án đúng là a
Câu 6
Ta có: \(\dfrac{x}{5} = \dfrac{y}{4}\)\( \Rightarrow \dfrac{{{x^2}}}{{25}} = \dfrac{{{y^2}}}{{16}}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\dfrac{{{x^2}}}{{25}} = \dfrac{{{y^2}}}{{16}} = \dfrac{{{x^2} - {y^2}}}{{25 - 16}} = \dfrac{9}{9} = 1\)
Do đó: \(\dfrac{{{x^2}}}{{25}} = 1 \Rightarrow {x^2} = 25 \Rightarrow \) \(x = 5\) hoặc \(x = - 5\)
\(\dfrac{{{y^2}}}{{16}} = 1 \Rightarrow {y^2} = 16 \Rightarrow \) \(y = 4\) hoặc \(y = - 4\)
Lại có: \(\dfrac{x}{5} = \dfrac{y}{4}\) nên \(x,y\) cùng dấu.
Nên có hai cặp số thỏa mãn là \(x = 5;y = 4\) hoặc \(x = - 5;y = - 4.\)
Đáp án đúng là a
Câu 7
Gọi số học sinh lớp 7A1, 7A2, 7A3 lần lượt là \(x;y;z\,\left( {x;y;z > 0} \right)\)
Theo bài ra ta có \(x + y + z = 180\); \(x = \dfrac{9}{10}y;\,y = \dfrac{{10}}{{11}}z\)
Suy ra \(10x = 9y \) nên \(\dfrac{x}{9} = \dfrac{y}{10}\);
\(11y = 10z\) nên \(\dfrac{y}{{10}} = \dfrac{z}{{11}}\)
Do đó \(\dfrac{x}{{9}} = \dfrac{y}{{10}} = \dfrac{z}{{11}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{{9}} = \dfrac{y}{{10}} = \dfrac{z}{{11}}\)\( = \dfrac{{x + y + z}}{{9 + 10 + 11}} = \dfrac{{180}}{{30}} = 6\)
Do đó: \(x = 9.6 = 54\); \(y = 10.6 = 60\); \(z = 11.6=66\)
Số học sinh lớp \(7A1\) là \(54\) học sinh.
Đáp án đúng là b
Câu 8
Ta có \(\dfrac{a}{b} = \dfrac{c}{d}\)\( \Rightarrow \dfrac{a}{c} = \dfrac{b}{d}\)
Mặt khác \(\dfrac{a}{c} = \dfrac{b}{d} = \dfrac{{7a}}{{7c}} = \dfrac{{3b}}{{3d}} = \dfrac{{7a + 3b}}{{7c + 3d}} = \dfrac{{7a - 3b}}{{7c - 3d}}\)
Từ \(\dfrac{{7a + 3b}}{{7c + 3d}} = \dfrac{{7a - 3b}}{{7c - 3d}} \Rightarrow \dfrac{{7a + 3b}}{{7a - 3b}} = \dfrac{{7c + 3d}}{{7c - 3d}}\)
Đáp án đúng là d