Đề bài
Câu 1
Khi có \(y = \dfrac{a}{x}\) ta nói:
\(y\) tỉ lệ với \(x\)
\(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a\)
\(y\) tỉ lệ thuận với \(x\)
\(x\) tỉ lệ thuận với \(y\)
Câu 2
Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch và \(y = \dfrac{a}{x}\). Gọi \({x_1};{x_2};{x_3};...\) là các giá trị của \(x\) và \({y_1};{y_2};{y_3};...\) là các giá trị tương ứng của \(y\). Ta có
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = \dfrac{1}{a}\)
\(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}} = a\)
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)
\(\dfrac{{{x_1}}}{{{y_1}}} = \dfrac{{{x_2}}}{{{y_2}}} = a\)
Câu 3
Cho bảng sau:
x |
10 |
20 |
25 |
30 |
40 |
y |
10 |
5 |
4 |
\(\dfrac{{10}}{3}\) |
2,5 |
Khi đó:
\(y\) tỉ lệ với \(x\).
\(y\) và \(x\) là hai đại lượng tỉ lệ thuận.
\(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.
\(y\) và \(x\) là hai đại lượng bất kì.
Câu 4
Cho hai đại lượng tỉ lệ nghịch \(x\) và \(y\); \({x_1}\) và \({x_2}\) là hai giá trị của \(x\); \({y_1}\) và \({y_2}\) là hai giá trị tương ứng của \(y\). Biết \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\). Khi đó \({y_2} = ?\)
\({y_2} = 5\)
\({y_2} = 7\)
\({y_2} = 6\)
\({y_2} = 8\)
Câu 5
Cho biết \(y\) tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\). Chọn câu đúng.
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
\(y\) và \(z\) tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(\dfrac{{{k_2}}}{{{k_1}}}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \({k_1}.{k_2}\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}\)
Câu 6
Để hoàn thành một công việc trong \(8\) giờ cần 35 công nhân. Nếu có \(40\)công nhân thì công việc đó được hoàn thành trong mấy giờ?
\(5\) giờ
\(8\) giờ
\(6\) giờ
\(7\)giờ
Câu 7
Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong \(4\) ngày, đội thứ hai trong \(7\) ngày và đội thứ \(3\) trong \(9\) ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có nhiều hơn đội thứ hai là \(3\) máy và công suất của các máy như nhau?
\(7\) máy
\(11\) máy
\(6\) máy
\(9\) máy
Câu 8
Để làm một công việc trong \(12\) giờ cần \(45\)công nhân. Nếu số công nhân tăng thêm \(15\) người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ?
\(3\)
\(6\)
\(9\)
\(4\)
Câu 9
Hai xe ô tô cùng đi từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai đi từ A đến B là 4 giờ. Tính thời gian xe thứ hai đi từ A đến B.
\(3\)
\(6\)
\(9\)
\(4\)
Đáp án
Câu 1
Nếu đại lượng \(y\) liên hệ với đại lượng \(x\) theo công thức \(y = \dfrac{a}{x}\) thì ta nói \(y\) tỉ lệ nghịch với \(x\) theo hệ số tỉ lệ \(a.\)
Đáp án đúng là b
Câu 2
Nếu hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(a\) thì:
\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)
\(\dfrac{{{x_1}}}{{{x_2}}} = \dfrac{{{y_2}}}{{{y_1}}};\dfrac{{{x_1}}}{{{x_3}}} = \dfrac{{{y_3}}}{{{y_1}}};...\)
Đáp án đúng là c
Câu 3
Xét các tích giá trị của \(x\) và \(y\) ta được: \(10.10 = 20.5\) \( = 25.4 = 30.\dfrac{{10}}{3}\) \( = 40.2,5 = 100\).
Nên \(y\) và \(x\) là hai đại lượng tỉ lệ nghịch.
Đáp án đúng là c
Câu 4
Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch nên\({x_1}{y_1} = {x_2}{y_2}\) mà \({x_1} = 4,{x_2} = 3\) và \({y_1} + {y_2} = 14\)
Do đó \(4{y_1} = 3{y_2} \Rightarrow \dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được: \(\dfrac{{{y_1}}}{3} = \dfrac{{{y_2}}}{4} = \dfrac{{{y_1} + {y_2}}}{{3 + 4}} = \dfrac{{14}}{7} = 2\)
Do đó \(\dfrac{{{y_1}}}{3} = 2 \Rightarrow {y_1} = 6\); \(\dfrac{{{y_2}}}{4} = 2 \Rightarrow {y_2} = 8\)
Vậy \({y_2} = 8.\)
Đáp án đúng là d
Câu 5
Vì \(y\)tỉ lệ nghịch với \(x\) theo tỉ số \({k_1}\left( {{k_1} \ne 0} \right)\) nên \(y = \dfrac{{{k_1}}}{x}\).
Và \(x\) tỉ lệ nghịch với \(z\) theo tỉ số \({k_2}\left( {{k_2} \ne 0} \right)\) nên \(x = \dfrac{{{k_2}}}{z}\).
Thay \(x = \dfrac{{{k_2}}}{z}\) vào \(y = \dfrac{{{k_1}}}{x}\) ta được \(y = \dfrac{{{k_1}}}{{\dfrac{{{k_2}}}{z}}} = \dfrac{{{k_1}}}{{{k_2}}}z\).
Nên \(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(\dfrac{{{k_1}}}{{{k_2}}}.\)
Đáp án đúng là d
Câu 6
Gọi thời gian công nhân làm một công việc đó là \(x\left( {x > 0} \right)\) (giờ)
Vì số công nhân và thời gian làm của công nhân là hai đại lượng tỉ lệ nghịch, nên theo bài ra ta có:
8 . 35 = 40.x \( \Rightarrow 280 = 40.x \Rightarrow x = 7\)(giờ) ( thỏa mãn)
Vậy nếu có \(40\)công nhân thì công việc đó được hoàn thành trong 7 giờ.
Đáp án đúng là d
Câu 7
Gọi số máy cày của ba đội lần lượt là \(x;y;z\,\left( {x;y;z > 0} \right)\).
Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch.
Theo bài ra ta có: \(x.4 = y.7 = z.9\) và \(x - y = 3\)
Suy ra \(\dfrac{x}{7} = \dfrac{y}{4}\) . Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{x}{7} = \dfrac{y}{4} = \dfrac{{x - y}}{{7 - 4}} = \dfrac{3}{3} = 1\)
Do đó \(x = 7;y = 4\) .
Vậy đội thứ nhất có \(7\) máy.
Đáp án đúng là a
Câu 8
Gọi thời gian để hoàn thành công việc sau khi tăng thêm \(15\) công nhân là \(x\,\left( {0 < x < 12} \right)\) (giờ)
Từ bài ra ta có số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Nếu tăng thêm \(15\) công nhân thì số công nhân sau khi tăng là \(45 + 15 = 60\) công nhân.
Theo bài ra ta có:
\(45.12 = 60.x \Rightarrow 60x = 540 \Rightarrow x = 9\) giờ.
Do đó thời gian hoàn thành công việc giảm đi \(12 - 9 = 3\) giờ.
Đáp án đúng là a