Đề bài

Câu 1

Kết quả của phép nhân (x + 5) . (-x – 3) là:

  1. x2 + 2x + 15 

  2. -x2 – 8x – 15

  3. -x2 – 15

  4. –x2 + 2x – 15

Câu 2

Tìm giá trị của \(a\) biết \(\left( {x + 1} \right)\left( {x - 2} \right) = {x^2} + ax - 2\)

  1. . \( - 1\)

  2. \(1\)

  3. \(2\)

  4. \( - 2\)

Câu 3

Hệ số lớn nhất trong kết quả của phép nhân \(\left( {{x^2} + 2x - 1} \right)\left( {2x + 4} \right)\) là:

  1. 6

  2. 2

  3. 8

  4. 3

Câu 4

Tìm giá trị \(x\) thỏa mãn \(\left( {2x + 5} \right)\left( {x - 2} \right) - 2{x^2} = 6\) là:

  1. 4

  2. 16 

  3. Không có giá trị \(x\) thỏa mãn.

Câu 5

Thực hiện phép nhân

\(\left( {x + 2} \right)\left( {{x^3} + 3{x^2} - 4} \right)\).

  1. x4 + 3x3 + 6x2 – 4x – 8

  2. x3 + 3x2 + x – 2

  3. x4 + 3x3 + 6x2 – 4x + 8

  4. x4 + 5x3 + 6x2 – 4x – 8

Câu 6

Tìm giá trị của \(x\)thỏa mãn:

\(\left( {2x - 3} \right)\left( {x + 2} \right) + \left( {x + 5} \right)\left( {4 - x} \right) = 30\)

  1. x = 4

  2. x = -4

  3. x = 4; x = -4

  4. x = 0; x = 4

Câu 7

Tìm tổng của ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 56.

  1. 42

  2. 30

  3. 56

  4. 36

Câu 8

Tính \(A = \left( {x - 1} \right)\left( {{x^2} - x - 1} \right) - {x^2}\left( {x - 2} \right) - 2\)

  1. x3 + 2x - 1

  2. -1

  3. 2x2 + 2x – 1

  4. –x3 – 2x2 + 2x – 1

Câu 9

Tính giá trị của biểu thức \(A = \left( {x + 1} \right)\left( {{x^7} - 4{x^6} + 4{x^5} - 4{x^4} + 4{x^3} - 4{x^2} - x} \right)\) với \(x = 3.\) 

  1. 3

  2. -12

  3. 6

  4. -48

Câu 10

Tính tổng các hệ số các hạng tử của đa thức:

A(x) = (-x2 + 4x – 4). (x – 3) – (x2 – 6x + 9) . (-x + 2)

  1. 0

  2. 1

  3. -2

  4. -1

Đáp án

Câu 1

Ta có: (x + 5) . (-x – 3) = x . (-x) + x . (-3) + 5 . (-x) + 5 . (-3) = -x2 – 3x – 5x – 15 = -x2 – 8x – 15

Đáp án đúng là b

Câu 2

Ta có: \(\left( {x + 1} \right)\left( {x - 2} \right)\) \( = x\left( {x - 2} \right) + x - 2\)\( = {x^2} - 2x + x - 2\)\( = {x^2} - x - 2\)

Lại có: \(\left( {x + 1} \right)\left( {x - 2} \right) = {x^2} + ax - 2\)

\(\begin{array}{l} \Rightarrow {x^2} - x - 2 = {x^2} + ax - 2\\ \Rightarrow a =  - 1.\end{array}\)

Đáp án đúng là a

Câu 3

Ta có:

\(\begin{array}{l}\,\,\,\,\left( {{x^2} + 2x - 1} \right)\left( {2x + 4} \right)\\ = {x^2}\left( {2x + 4} \right) + 2x\left( {2x + 4} \right) - \left( {2x + 4} \right)\\ = 2{x^3} + 4{x^2} + 4{x^2} + 8x - 2x - 4\\ = 2{x^3} + 8{x^2} + 6x - 4.\end{array}\) .

\( \Rightarrow \) Hệ số lớn nhất trong đa thức là 8.

Đáp án đúng là c

Câu 4

\(\begin{array}{l}\left( {2x + 5} \right)\left( {x - 2} \right) - 2{x^2} = 6\\ 2x\left( {x - 2} \right) + 5\left( {x - 2} \right) - 2{x^2} = 6\\ 2{x^2} - 4x + 5x - 10 - 2{x^2} = 6\\ x - 10 = 6\\ x = 16\end{array}\)

Đáp án đúng là c

Câu 5

Ta có:

\(\begin{array}{l}\,\,\,\,\,\left( {x + 2} \right)\left( {{x^3} + 3{x^2} - 4} \right)\\ = x\left( {{x^3} + 3{x^2} - 4} \right) + 2\left( {{x^3} + 3{x^2} - 4} \right)\\ = {x^4} + 3{x^3} - 4x + 2{x^3} + 6{x^2} - 8\\ = {x^4} + 5{x^3} + 6{x^2} - 4x - 8.\end{array}\)

Đáp án đúng là d

Câu 6

\(\begin{array}{l}\left( {2x - 3} \right)\left( {x + 2} \right) + \left( {x + 5} \right)\left( {4 - x} \right) = 30\\ \Leftrightarrow 2x\left( {x + 2} \right) - 3\left( {x + 2} \right) + x\left( {4 - x} \right) + 5\left( {4 - x} \right) = 30\\ \Leftrightarrow 2{x^2} + 4x - 3x - 6 + 4x - {x^2} + 20 - 5x = 30\\ \Leftrightarrow {x^2} + 14 = 30\\ \Leftrightarrow {x^2} = 16\\ \Leftrightarrow \left[ \begin{array}{l}x = 4\\x =  - 4\end{array} \right..\end{array}\)

Vậy \(x = 4\) hoặc \(x =  - 4.\)

Đáp án đúng là c

Câu 7

Gọi 3 số tự nhiên chẵn liên tiếp là \(x,\,\,x + 2,\,\,\,x + 4\,\,\left( { x \in \mathbb{N},\,\,x\,\, \vdots \,\,2} \right)\)

Vì tích hai số sau lớn hơn tích hai số trước 56 nên ta có:

\(\begin{array}{l}\left( {x + 4} \right)\left( {x + 2} \right) - x\left( {x + 2} \right) = 56\\ \Leftrightarrow x\left( {x + 2} \right) + 4\left( {x + 2} \right) - {x^2} - 2x = 56\\ \Leftrightarrow {x^2} + 2x + 4x + 8 - {x^2} - 2x = 56\\ \Leftrightarrow 4x = 48\\ \Leftrightarrow x = 12\,\,\,\,\left( {tm} \right)\end{array}\)

Vậy ba số tự nhiên chẵn cần tìm là: \(12;\,\,14;\,\,16.\)

Tổng của 3 số đó là: 12 + 14 + 16 = 42

Đáp án đúng là a

Câu 8

Ta có:

 \(\begin{array}{l}A = \left( {x - 1} \right)\left( {{x^2} - x - 1} \right) - {x^2}\left( {x - 2} \right) - 2\\\,\,\,\,\, = \left( {x - 1} \right){x^2} - \left( {x - 1} \right)x - \left( {x - 1} \right) - {x^3} + 2{x^2} - 2\\\,\,\,\,\, = {x^3} - {x^2} - {x^2} + x - x + 1 - {x^3} + 2{x^2} - 2\\\,\,\,\,\, =  - 1.\end{array}\)

Đáp án đúng là b

Câu 9

Ta có: \(A = \left( {x + 1} \right)\left( {{x^7} - 4{x^6} + 4{x^5} - 4{x^4} + 4{x^3} - 4{x^2} - x} \right)\)

Với \(x = 3\) \( \Rightarrow 4 = x + 1\) thay vào \(A\) ta được:

\(\begin{array}{l}A = \left( {x + 1} \right)\left( {{x^7} - 4{x^6} + 4{x^5} - 4{x^4} + 4{x^3} - 4{x^2} - x} \right)\\\,\,\,\,\, = \left( {x + 1} \right)\left[ {{x^7} - \left( {x + 1} \right){x^6} + \left( {x + 1} \right){x^5} - \left( {x + 1} \right){x^4} + \left( {x + 1} \right){x^3} - \left( {x + 1} \right){x^2} - x} \right]\\\,\,\,\,\, = \left( {x + 1} \right)\left( {{x^7} - {x^7} - {x^6} + {x^6} + {x^5} - {x^5} - {x^4} + {x^4} + {x^3} - {x^3} - {x^2} - x} \right)\\\,\,\,\,\, = \left( {x + 1} \right)\left( { - {x^2} - x} \right)\\\,\,\,\,\, =  - {x^3} - {x^2} - {x^2} - x\\\,\,\,\,\, =  - {x^3} - 2{x^2} - x\end{array}\)

Từ đó với \(x = 3\),  ta có \(A =  - {3^3} - {2.3^2} - 3 =  - 48\)

Vậy với \(x = 3\), thì \(A =  - 48\).

Đáp án đúng là d